Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-986326.v1

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) has been identified as a primary receptor for severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2). Here, we investigated the expression regulation of ACE2 in enterocytes under amino acid deprivation conditions. In this study, we confirmed that ACE2 protein was highly expressed in intestinal epithelial cells in mice and found that ACE2 expression was upregulated upon all or only an essential amino acid deprivation in human colonic epithelial CCD841 cells. Furthermore, we found that knockdown of general control nonderepressible 2 ( GCN2 ) reduced intestinal ACE2 mRNA and protein levels in vitro and in vivo . Consistently, we revealed two GCN2 inhibitors, GCN2iB and GCN2-IN-1, downregulated ACE2 protein expression in CCD841 cells in a dose-dependent manner. Moreover, we found that increased ACE2 expression in response to leucine deprivation was GCN2 dependent. Through RNA-seq analysis, we identified that two novel transcription factors, MAFB and MAFF, positively regulated ACE2 expression under leucine deprivation in CCD841 cells. These findings demonstrate that amino acid deficiency increases ACE2 expression and thereby likely aggravates intestinal SARS-CoV-2 infection.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Amino Acid Metabolism, Inborn Errors
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-709952.v1

ABSTRACT

Background: During the COVID-19 pandemic, a phenomenon emerged in which some patients with severe disease were critically ill and could not be discharged from the ICU even though they exhibited negative viral tests. In general, continuous negative viral tests are thought to indicate that the virus has been cleared from the body and that the patients can be considered "recovered". However, because these patients were still critically ill, they obviously had not truly recovered from the disease. We sought to investigate why these patients were still critically ill even though they exhibited negative viral tests by analyzing the gene expression profiles of their peripheral immune cells using transcriptome sequencing. Methods: Fourteen severe COVID-19 patients with at least 3 negative virus tests but were still in critical ill and could not be discharged from the ICU were enrolled. Blood samples from 14 patients and 5 healthy donors were collected. Total RNA was extracted from nucleated cells for RNA-Sequencing. FeatureCounts v1.5.0-p3 was used to count the reads numbers mapped to each gene. Results: All enrolled patients, regardless of changes in genes related to different symptoms and inflammatory responses, showed universally and severely decreased expression of adaptive immunity-related genes, especially those related to T/B cell arms and HLA molecules, and that these patients exhibited long-term secondary infections. This adaptive immune suppression is unlikely due to classic immune checkpoint molecules such as PD-1 or long-term use of glucocorticoids but may be caused by an unknown mechanism that has not yet been discovered. Conclusions: Our findings strongly suggest that an initial recovery of these severe COVID-19 patients, as indicated by negative viral tests, may not indicate actual recovery. They still suffer from secondary infections for a long period of time because of severe adaptive immunosuppression and need to receive a variety of antibiotics, antifungal drugs, or combination therapies. Appropriate methods should be used to detect their adaptive immune function, and appropriate immunotherapy that can activate the adaptive immune response should be developed. Trial registration: Not applicable (this study does not involve intervention on human participants).


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.19.21260139

ABSTRACT

COVID-19 is a huge threat to global health. Due to the lack of definitive etiological therapeutics currently, effective disease monitoring is of high clinical value for better healthcare and management of the large number of COVID-19 patients. In this study, we recruited 37 COVID-19 patients, collected 176 blood samples upon diagnosis and during treatment, and analyzed cell-free DNA (cfDNA) in these samples. We report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA characteristics reflect patient-specific physiological conditions during treatment. Further analysis on tissue origin tracing of cfDNA reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, we demonstrate the translational merit of cfDNA as valuable analyte for effective disease monitoring, as well as tissue injury assessment in COVID-19 patients.


Subject(s)
COVID-19
4.
Cell Res ; 31(8): 836-846, 2021 08.
Article in English | MEDLINE | ID: covidwho-1275907

ABSTRACT

Severe COVID-19 disease caused by SARS-CoV-2 is frequently accompanied by dysfunction of the lungs and extrapulmonary organs. However, the organotropism of SARS-CoV-2 and the port of virus entry for systemic dissemination remain largely unknown. We profiled 26 COVID-19 autopsy cases from four cohorts in Wuhan, China, and determined the systemic distribution of SARS-CoV-2. SARS-CoV-2 was detected in the lungs and multiple extrapulmonary organs of critically ill COVID-19 patients up to 67 days after symptom onset. Based on organotropism and pathological features of the patients, COVID-19 was divided into viral intrapulmonary and systemic subtypes. In patients with systemic viral distribution, SARS-CoV-2 was detected in monocytes, macrophages, and vascular endothelia at blood-air barrier, blood-testis barrier, and filtration barrier. Critically ill patients with long disease duration showed decreased pulmonary cell proliferation, reduced viral RNA, and marked fibrosis in the lungs. Permanent SARS-CoV-2 presence and tissue injuries in the lungs and extrapulmonary organs suggest direct viral invasion as a mechanism of pathogenicity in critically ill patients. SARS-CoV-2 may hijack monocytes, macrophages, and vascular endothelia at physiological barriers as the ports of entry for systemic dissemination. Our study thus delineates systemic pathological features of SARS-CoV-2 infection, which sheds light on the development of novel COVID-19 treatment.


Subject(s)
COVID-19/pathology , Lung/virology , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , Autopsy , COVID-19/virology , China , Cohort Studies , Critical Illness , Female , Fibrosis , Hospitalization , Humans , Kidney/pathology , Kidney/virology , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Lung/pathology , Male , Middle Aged , RNA, Viral/metabolism , SARS-CoV-2/genetics , Spleen/pathology , Spleen/virology , Trachea/pathology , Trachea/virology
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-239498.v1

ABSTRACT

Renal injury is common in patients with coronavirus disease 2019 (COVID-19). We aimed to determine the relationship of estimated glomerular filtration rate (eGFR) and acute kidney injury (AKI) with the characteristics, progression, and prognosis of COVID-19 in-patients. We retrospectively reviewed 1851 COVID-19 patients admitted to 3 hospitals in Wuhan, China. Clinical, laboratory, radiological, treatment, complication, and outcome data were analyzed. Patients were stratified according to tertiles of eGFR (≥ 90 vs. 60–89 vs. <60 mL/min/1.73 m2). The risk of reaching the composite endpoint—intensive care unit admission, invasive ventilation, or death—was compared. On admission, 25.5% patients had renal impairment (eGFR < 90 mL/min/1.73 m2), but only 2.6% patients had chronic kidney disease (CKD). The overall in-hospital AKI incidence was 6.7%. Severe illness and comorbidities (hypertension, diabetes, CKD, and cardiovascular/cerebrovascular diseases) were more common among patients with low eGFR (< 90 mL/min/1.73 m2). Despite the more frequent use of intensive oxygen therapy, continuous blood purification, and glucocorticoid treatment, the prognosis of these patients was unsatisfactory, with the incidence of the composite endpoint (15.4% vs. 19.6% vs. 54.5%; P = 0.000) and complications (AKI, respiratory failure, cardiac injury, coagulation disorders, sepsis, etc.) increasing with decreasing eGFR. Kaplan–Meier survival analysis revealed that patients with eGFR < 90 mL/min/1.73 m2 or AKI had significantly escalated risks of reaching the composite endpoint. Multivariate regression analysis showed that renal insufficiency (eGFR < 60 mL/min/1.73 m2 ) on admission and in-hospital AKI independently predicted poor prognosis among COVID-19 in-patients. Early and continuous renal-function monitoring and early AKI diagnosis are necessary to predict and prevent the progression of COVID-19.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Sepsis , Renal Insufficiency , Kidney Diseases , Blood Coagulation Disorders, Inherited , Acute Kidney Injury , Hypertension , COVID-19 , Renal Insufficiency, Chronic , Respiratory Insufficiency , Heart Diseases
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-208797.v1

ABSTRACT

Background: Gut ecosystem has profound effects on host physiology and health. Gastrointestinal (GI) symptoms were frequently observed in patients with COVID-19. Compared with other organs, gut antiviral response can result in more complicated immune responses because of the interactions between the gut microbiota and host immunity. However, there are still large knowledge gaps in the impact of COVID-19 on gut molecular profiles and commensal microbiome, hindering our comprehensive understanding of the pathogenesis of SARS-CoV-2 and the treatment of COVID-19.Results: We performed longitudinal stool multi-omics profiling to systemically investigate the molecular phenomics alterations of gut ecosystem in COVID-19. Gut proteomes of COVID-19 were characterized by disturbed immune, proteolysis and redox homeostasis. The expression and glycosylation of proteins involved in neutrophil degranulation and migration were suppressed, while those of proteases were upregulated. The variable domains of Ig heavy chains were downregulated and the overall glycosylation of IgA heavy chain constant regions, IgGFc-binding protein, and J chain were suppressed with glycan-specific variations. There was a reduction of beneficial gut bacteria and an enrichment of bacteria derived deleterious metabolites potentially associated with multiple types of diseases (such as ethyl glucuronide). The reduction of Ig heave chain variable domains may contribute to the increase of some Bacteroidetes species. Many bacteria ceramide lipids with a C17-sphingoid based were downregulated in COVID-19. In many cases, the gut phenome did not restore two months after symptom onset.Conclusions: Our study indicates widely disturbed gut molecular profiles which may play a role in the development of symptoms in COVID-19. Our findings also emphasis the need for ongoing investigation of the long-term gut molecular and microbial alterations during COVID-19 recovery process. Considering the gut ecosystem as a potential target could offer a valuable approach in managing the disease.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Gastrointestinal Diseases
7.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-106760.v1

ABSTRACT

Although human antibodies elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein are profoundly boosted upon infection, little is known about the function of N-reactive antibodies. Herein, we isolated and profiled a panel of 32 N protein-specific monoclonal antibodies (mAbs) from a quick recovery coronavirus disease-19 (COVID-19) convalescent patient who had dominant antibody responses to the SARS-CoV-2 N protein rather than to the SARS-CoV-2 spike (S) protein. The complex structure of the N protein RNA binding domain with the mAb with the highest binding affinity (nCoV396) revealed changes in the epitopes and antigen’s allosteric regulation. Functionally, a virus-free complement hyper-activation analysis demonstrated that nCoV396 specifically compromises the N protein-induced complement hyper-activation, which is a risk factor for the morbidity and mortality of COVID-19 patients, thus laying the foundation for the identification of functional anti-N protein mAbs.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Immunologic Deficiency Syndromes , COVID-19
8.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3699795

ABSTRACT

Dysregulated immune cell responses have been linked to the severity of Coronavirus Disease 2019 (COVID-19). However, the specific viral factor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributing to the immune-dysregulation is currently unclear. Herein, we identified the ectodomain of Ig-like fold viral proteinSARS-CoV-2 Orf7a interacted with CD14+ monocytes at the highest efficiency in human peripheral blood mononuclear cells, but not for the relative highly pathogenic protein SARS-CoV Orf7a. The 2.2 Å resolutioncrystal structure of SARS-CoV-2 Orf7a reveals three remarkable changes in the amphipathic side of the four-strand β-sheet, implying the potential functional interface of the viral protein. Structure-based superimposition of SARS-CoV-2 Orf7a with SARS-CoV Orf7a - LFA1 working model suggests that SARS-CoV-2 Orf7a utilizes different binding patterns to recognize the specific immune cells. Importantly, SARS-CoV-2 Orf7a co-incubation with CD14+ monocytes ex vivo triggers a decrease of HLA-DR/DP/DQ and significant pro-inflammatory cytokines expressions, including IL-6, IL-1β, IL-8, and TNF-α. Our work demonstrates that SARS-CoV-2 Orf7a is an immunomodulating factor for immune cells binding and trigging aberrant inflammatory responses, providing promising therapeutic drug targets in the pandemic disease COVID-19.Funding: This work is supported by the National Key R&D Program of China (2019YFA0110300) granted to J.C.; the Special Fund for Scientific and Technological Innovation Strategy of Guangdong Province of China (2018B030306029), COVID-19 Emerging Prevention Products, Research Special Fund of Zhuhai City (ZH22036302200016PWC) granted to S.C.; the Fundamental Research Funds for the Central Universities (19ykzd36) granted to J.C; and the Science and Technology Program of Guangzhou (202002030069) granted to J.C. Conflict of Interest: The authors declare no conflict of interest.Ethical Approval: The human peripheral blood samples for the experiments were collected through The Health Management Center, The Fifth Affiliated Hospital, Sun Yat-sen University. This study was approved by The Medical Ethics Committee of The Fifth Affiliated Hospital, Sun Yat-sen University (2020-K195-1).


Subject(s)
Coronavirus Infections , COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.11.293258

ABSTRACT

Comparative functional analysis of the binding interactions between various betacoronavirus strains and their potential human target proteins, such as ACE1, ACE2 and CD26, is critical to our future understanding and combating of COVID-19. Here, employing large replicate sets of GPU accelerated molecular dynamics simulations, we statistically compare atom fluctuations of the known human target proteins in both the presence and absence of different strains of the viral receptor binding domain (RBD) of the S spike glycoprotein. We identify a common interaction site between the N-terminal helices of ACE2 and the viral RBD in all strains (hCoV-OC43, hCoV-HKU1, MERS-CoV, SARS-CoV1, and SARS-CoV-2) and a second more dynamically complex RBD interaction site involving the ACE2 amino acid sites K353, Q325, and a novel motif, AAQPFLL (386-392) in the more recent cross-species spillovers (i.e. absent in hCoV-OC43). We use computational mutagenesis to further confirm the functional relevance of these sites. We propose a "one touch/two touch" model of viral evolution potentially involved in functionally facilitating binding interactions in zoonotic spillovers. We also observe these two touch sites governing RBD binding activity in simulations on hybrid models of the suspected viral progenitor, batCoV-HKU4, interacting with both the human SARS target, ACE2, and the human MERS target, CD26. Lastly, we confirm that the presence of a common hypertension drug (lisinopril) within the target site of SARS-CoV-2 bound models of ACE1 and ACE2 acts to enhance the RBD interactions at the same key sites in our proposed model. In the near future, we recommend that our comparative computational analysis identifying these key viral RBD-ACE2 binding interactions be supplemented with comparative studies of site-directed mutagenesis in order to screen for current and future coronavirus strains at high risk of zoonotic transmission to humans. STATEMENT OF SIGNIFICANCEWe generated structural models of the spike glycoprotein receptor binding domain from recent and past betacoronavirus outbreak strains aligned to the angiotensin 1 converting enzyme 2 protein, the primary target protein of the SARS-CoV-2 virus causing COVID 19. We then statistically compared computer simulated molecular dynamics of viral bound and unbound versions of each model to identify locations where interactions with each viral strain have dampened the atom fluctuations during viral binding. We demonstrate that all known strains of betacoronavirus are strongly interactive with the N-terminal helix region of ACE2. We also identify a more complex viral interaction with three novel sites that associates with more recent and deadly SARS strains, and also a bat progenitor strain HKU4.


Subject(s)
COVID-19 , Hypertension
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.10.292318

ABSTRACT

Although human antibodies elicited by severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid (N) protein are profoundly boosted upon infection, little is known about the function of N-directed antibodies. Herein, we isolated and profiled a panel of 32 N protein-specific monoclonal antibodies (mAb) from a quick recovery coronavirus disease-19 (COVID-19) convalescent, who had dominant antibody responses to SARS-CoV-2 N protein rather than to Spike protein. The complex structure of N protein RNA binding domain with the highest binding affinity mAb nCoV396 reveals the epitopes and antigens allosteric changes. Functionally, a virus-free complement hyper-activation analysis demonstrates that nCoV396 specifically compromises N protein-induced complement hyper-activation, a risk factor for morbidity and mortality in COVID-19, thus paving the way for functional anti-N mAbs identification. One Sentence SummaryB cell profiling, structural determination, and protease activity assays identify a functional antibody to N protein.


Subject(s)
COVID-19
11.
Infect Genet Evol ; 24(8):104446-104446, 2020.
Article in English | MEDLINE | ID: covidwho-646355

ABSTRACT

S. Pullorum and S. Enteritidis are closely related in genetic terms, but they show very different pathogenicity and host range. S. Enteritidis infects many different hosts, usually causing acute gastroenteritis, while S. Pullorum is restricted to avian, where it causes systemic disease in young animals. The reason why they differ in host range and pathogenicity is unknown. The core-genome denotes those genes that are present in all strains within a clade, and in the present work, an automated bioinformatics workflow was developed and applied to identify core-genome differences between these two serovars with the aim to identify genome features associated with host specificity of S. Pullorum. Results showed that S. Pullorum unique coding sequences (CDS) were mainly concentrated in three regions not present in S. Enteritidis, suggesting that such CDS were taken up probably during the separation of the two types from their common ancestor. One of the unique regions encoded Pathogenicity Islands 19 (SPI-19), which encodes a type VI secretion system (T6SS). Single-nucleotide polymorphism (SNP) analysis identified 1791 conserved SNPs in coding sequences between the two serovars, including several SNPs located in a type IV secretion system (T4SS). Analyzing of 100 bp regions upstream of coding sequences identified 443 conserved SNPs between the two serovars, including SNP variations in type III secretion system effector (T3SE). In conclusion, this analysis has identified genetic features encoding putative factors controlling host-specificity in S. Pullorum. The novel bioinformatic workflow and associated scripts can directly be applied to other bacteria to uncover the genome difference between clades. OBJECTIVE: Currently, Coronavirus COVID-19 is spreading worldwide very rapidly and its control is very difficult because there is no effective vaccine or drugs available in markets. This virus can infect both animals and people and cause illnesses of the respiratory tract. WHO has declared Coronavirus as pandemic and the whole world is fighting against Coronavirus. Globally, more than 199,478 people have been diagnosed with COVID-19. As of March 18, 2020, more than 167 countries have been affected and more than 8000 deaths have been reported. The main country being affected is China followed by Italy, Iran, Spain, France, and the USA. MATERIALS AND METHODS: Since there are no effective drugs available against Coronavirus, we conducted virtual screening of phytochemicals to find novel compounds against this virus. Hence, we created a phytochemical library of 318 phytochemicals from 11 plants which have been reported as antiviral, antibacterial and antifungal activity. The phytochemical library was subjected to virtual screening against molecular targets;Main protease (Mpro) and Angiotensin-Converting Enzyme 2 (ACE2). RESULTS: Top 10 compounds were selected from each target which had better and significantly low binding energy as compared to the reference molecule. CONCLUSIONS: Based on the binding energy score, we suggest that these compounds can be tested against Coronavirus and used to develop effective antiviral drugs.

12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.02.20143032

ABSTRACT

Summary Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus disease 2019 (COVID-19). However, microbial composition of the respiratory tract and other infected tissues, as well as their possible pathogenic contributions to varying degrees of disease severity in COVID-19 patients remain unclear. Method Between January 27 and February 26, 2020, serial clinical specimens (sputum, nasal and throat swab, anal swab and feces) were collected from a cohort of hospitalized COVID-19 patients, including 8 mildly and 15 severely ill patients (requiring ICU admission and mechanical ventilation), in the Guangdong province, China. Total RNA was extracted and ultra-deep metatranscriptomic sequencing was performed in combination with laboratory diagnostic assays. Co-infection rates, the prevalence and abundance of microbial communities in these COVID-19 patients were determined. Findings Notably, respiratory microbial co-infections were exclusively found in 84.6% of severely ill patients (11/13), among which viral and bacterial co-infections were detected by sequencing in 30.8% (4/13) and 69.2% (9/13) of the patients, respectively. In addition, for 23.1% (3/13) of the patients, bacterial co-infections with Burkholderia cepacia complex (BCC) and Staphylococcus epidermidis were also confirmed by bacterial culture. Further, a time-dependent, secondary infection of B. cenocepacia with expressions of multiple virulence genes in one severely ill patient was demonstrated, which might be the primary cause of his disease deterioration and death one month after ICU admission. Interpretation Our findings identified distinct patterns of co-infections with SARS-CoV-2 and various respiratory pathogenic microbes in hospitalized COVID-19 patients in relation to disease severity. Detection and tracking of BCC-associated nosocomial infections are recommended to improve the pre-emptive treatment regimen and reduce fatal outcomes of hospitalized patients infected with SARS-CoV-2. Funding National Science and Technology Major Project of China, National Major Project for Control and Prevention of Infectious Disease in China, the emergency grants for prevention and control of SARS-CoV-2 of Ministry of Science and Technology and Guangdong province, Guangdong Provincial Key Laboratory of Genome Read and Write, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, and Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics.


Subject(s)
Coinfection , Pneumonia, Staphylococcal , Bacterial Infections , Cross Infection , Communicable Diseases , Death , COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.26.173203

ABSTRACT

The emergence of the novel human coronavirus, SARS-CoV-2, causes a global COVID-19 (coronavirus disease 2019) pandemic. Here, we have characterized and compared viral populations of SARS-CoV-2 among COVID-19 patients within and across households. Our work showed an active viral replication activity in the human respiratory tract and the co-existence of genetically distinct viruses within the same host. The inter-host comparison among viral populations further revealed a narrow transmission bottleneck between patients from the same households, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions. Author summaryIn this study, we compared SARS-CoV-2 populations of 13 Chinese COVID-19 patients. Those viral populations contained a considerable proportion of viral sub-genomic messenger RNAs (sgmRNA), reflecting an active viral replication activity in the respiratory tract tissues. The comparison of 66 identified intra-host variants further showed a low viral genetic distance between intra-household patients and a narrow transmission bottleneck size. Despite the co-existence of genetically distinct viruses within the same host, most intra-host minor variants were not shared between transmission pairs, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions. Furthermore, the narrow bottleneck and active viral activity in the respiratory tract show that the passage of a small number of virions can cause infection. Our data have therefore delivered a key genomic resource for the SARS-CoV-2 transmission research and enhanced our understanding of the evolutionary dynamics of SARS-CoV-2.


Subject(s)
COVID-19
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.24.111823

ABSTRACT

SARS-CoV-2 infection have caused global pandemic and claimed over 5,000,000 tolls1-4. Although the genetic sequences of their etiologic viruses are of high homology, the clinical and pathological characteristics of COVID-19 significantly differ from SARS5,6. Especially, it seems that SARS-CoV-2 undergoes vast replication in vivo without being effectively monitored by anti-viral immunity7. Here, we show that the viral protein encoded from open reading frame 8 (ORF8) of SARS-CoV-2, which shares the least homology with SARS-CoV among all the viral proteins, can directly interact with MHC-I molecules and significantly down-regulates their surface expression on various cell types. In contrast, ORF8a and ORF8b of SARS-CoV do not exert this function. In the ORF8-expressing cells, MHC-I molecules are selectively target for lysosomal degradation by an autophagy-dependent mechanism. As a result, CTLs inefficiently eliminate the ORF8-expressing cells. Our results demonstrate that ORF8 protein disrupts antigen presentation and reduces the recognition and the elimination of virus-infected cells by CTLs8. Therefore, we suggest that the inhibition of ORF8 function could be a strategy to improve the special immune surveillance and accelerate the eradication of SARS-CoV-2 in vivo.


Subject(s)
COVID-19
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.20.103549

ABSTRACT

As of middle May 2020, the causative agent of COVID-19, SARS-CoV-2, has infected over 4 million people with more than 300 thousand death as official reports1,2. The key to understanding the biology and virus-host interactions of SARS-CoV-2 requires the knowledge of mutation and evolution of this virus at both inter- and intra-host levels. However, despite quite a few polymorphic sites identified among SARS-CoV-2 populations, intra-host variant spectra and their evolutionary dynamics remain mostly unknown. Here, using deep sequencing data, we achieved and characterized consensus genomes and intra-host genomic variants from 32 serial samples collected from eight patients with COVID-19. The 32 consensus genomes revealed the coexistence of different genotypes within the same patient. We further identified 40 intra-host single nucleotide variants (iSNVs). Most (30/40) iSNVs presented in single patient, while ten iSNVs were found in at least two patients or identical to consensus variants. Comparison of allele frequencies of the iSNVs revealed genetic divergence between intra-host populations of the respiratory tract (RT) and gastrointestinal tract (GIT), mostly driven by bottleneck events among intra-host transmissions. Nonetheless, we observed a maintained viral genetic diversity within GIT, showing an increased population with accumulated mutations developed in the tissue-specific environments. The iSNVs identified here not only show spatial divergence of intra-host viral populations, but also provide new insights into the complex virus-host interactions.


Subject(s)
COVID-19
16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.26.20081059

ABSTRACT

Background Effective therapies are urgently needed for the SARS-CoV-2 pandemic. Chloroquine has been proved to have antiviral effect against coronavirus in vitro. In this study, we aimed to assess the efficacy and safety of chloroquine with different doses in COVID-19. Method In this multicenter prospective observational study, we enrolled patients older than 18 years old with confirmed SARS-CoV-2 infection excluding critical cases from 12 hospitals in Guangdong and Hubei Provinces. Eligible patients received chloroquine phosphate 500mg, orally, once (half dose) or twice (full dose) daily. Patients treated with non-chloroquine therapy were included as historical controls. The primary endpoint is the time to undetectable viral RNA. Secondary outcomes include the proportion of patients with undetectable viral RNA by day 10 and 14, hospitalization time, duration of fever, and adverse events. Results A total of 197 patients completed chloroquine treatment, and 176 patients were included as historical controls. The median time to achieve an undetectable viral RNA was shorter in chloroquine than in non-chloroquine (absolute difference in medians -6.0 days; 95% CI -6.0 to -4.0). The duration of fever is shorter in chloroquine (geometric mean ratio 0.6; 95% CI 0.5 to 0.8). No serious adverse events were observed in the chloroquine group. Patients treated with half dose experienced lower rate of adverse events than with full dose. Conclusions Although randomised trials are needed for further evaluation, this study provides evidence for safety and efficacy of chloroquine in COVID-19 and suggests that chloroquine can be a cost-effective therapy for combating the COVID-19 pandemic.


Subject(s)
COVID-19 , Fever
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.17.20023721

ABSTRACT

The new coronavirus (SARS-CoV-2) outbreak originating from Wuhan, China, poses a threat to global health. While it's evident that the virus invades respiratory tract and transmits from human to human through airway, other viral tropisms and transmission routes remain unknown. We tested viral RNA in stool from 73 SARS-CoV-2-infected hospitalized patients using rRT-PCR. 53.42% of the patients tested positive in stool. 23.29% of the patients remained positive in feces even after the viral RNA decreased to undetectable level in respiratory tract. The viral RNA was also detected in gastrointestinal tissues. Furthermore, gastric, duodenal and rectal epithelia showed positive immunofluorescent staining of viral host receptor ACE2 and viral nucleocapsid protein in a case of SARS-CoV-2 infection. Our results provide evidence for gastrointestinal infection of SARS-CoV-2, highlighting its potential fecal-oral transmission route.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL